\times 0.05 mm

18277 measured reflections

 $R_{\rm int} = 0.064$

4738 independent reflections

3152 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ethyl 1-sec-butyl-2-(2-hydroxyphenyl)-1H-benzimidazole-5-carboxylate 0.25-hydrate

Natarajan Arumugam,^a Aisyah Saad Abdul Rahim,^a‡ Hasnah Osman,^b Madhukar Hemamalini^c and Hoong-Kun Fun^c*§

^aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 12 April 2010; accepted 27 April 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; disorder in solvent or counterion; R factor = 0.066; wR factor = 0.232; data-toparameter ratio = 19.5.

In the title compound, $C_{20}H_{22}N_2O_3 \cdot 0.25H_2O$, the water molecule (occupancy 0.25) is disordered across a crystallographic inversion center. The dihedral angle between the hydroxyphenyl ring and the benzimidazole ring system is 59.31 (9) $^{\circ}$. In the crystal structure, molecules are connected by intermolecular $O-H \cdots N$ and $C-H \cdots O$ hydrogen bonds. The crystal structure is further stabilized by a weak $C-H\cdots\pi$ interaction involving the imidazole ring.

Related literature

For background to benzimidazoles and their biological importance, see: Garuti et al. (2004); Bonfanti et al. (2008); Ozden et al. (2008); Shao et al. (2005); Blythin et al. (1986); Snow (2007). For the synthesis of benzimidazoles, see: Arumugam *et al.* (2010a,b,c). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

[‡] Additional correspondence author, e-mail: aisyah@usm.my. § Thomson Reuters ResearcherID: A-3561-2009.

Experimental

Crystal data

C ₂₀ H ₂₂ N ₂ O ₃ ·0.25H ₂ O	V = 1803.6 (5) Å ³
$M_r = 342.90$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 7.0484 (11) Å	$\mu = 0.09 \text{ mm}^{-1}$
b = 27.262 (4) Å	$T = 100 { m K}$
c = 9.4673 (14) Å	$0.34 \times 0.21 \times 0.03$
$\beta = 97.495 \ (3)^{\circ}$	

Data collection

Bruker APEX DUO CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\min} = 0.971, \ T_{\max} = 0.996$

Refinement

$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.066 \\ wR(F^2) &= 0.232 \\ S &= 1.08 \end{split}$	H atoms treated by a mixture of independent and constrained refinement
4738 reflections	$\Delta \rho_{\rm max} = 0.35 \ {\rm e} \ {\rm \AA}^{-3}$
243 parameters	$\Delta \rho_{\rm min} = -0.46 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the N1,N2,C1,C2,N7 imidazole ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{l} \text{O1-H1}\text{O1}\cdots\text{N1}^{\text{i}}\\ \text{C14-H1}\text{4}\text{C}\cdots\text{O1}^{\text{i}}\\ \text{C17-H17}\text{A}\cdots\text{Cg1}^{\text{ii}} \end{array}$	0.96 (4)	1.75 (4)	2.691 (3)	168 (3)
	0.96	2.45	3.398 (3)	168
	0.93	2.96	3.734 (3)	142

Symmetry codes: (i) $x, -y + \frac{3}{2}, z + \frac{1}{2}$; (ii) x + 1, y, z.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

NA, ASAR and HO acknowledge Universiti Sains Malaysia (USM) for funding the synthetic chemistry work under Research University Grant (1001/PFARMASI/815026). NA also thanks USM for the award of postdoctoral fellowship. HKF and MH thank the Malaysian Government and USM for the Research University Golden Goose grant No. 1001/ PFIZIK/811012 and MH also thanks USM for a post-doctoral research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2770).

References

- Arumugam, N., Abd Hamid, S., Abdul Rahim, A. S., Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, 0776-0777.
- Arumugam, N., Abdul Rahim, A. S., Abd Hamid, S., Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, 0796-0797.
- Arumugam, N., Abdul Rahim, A. S., Osman, H., Hemamalini, M. & Fun, H. K. (2010c). Acta Cryst. E66, 0845.

- Blythin, D. J., Kaminski, J. J., Domalski, M. S., Spitler, J., Solomon, D. M., Conn, D. J., Wong, S. C., Verbiar, L. L., Bober, L. A., Chiu, P. J. S., Watnick, A. S., Siegel, M. I., Hilbert, J. M. & McPhail, A. T. (1986). *J. Med. Chem.* 29, 1099–1113.
- Bonfanti, J.-F., Meyer, C., Doublet, F., Fortin, J., Muller, P., Queguiner, L., Gevers, T., Janssens, P., Szel, H., Willebrords, R., Timmerman, P., Wuyts, K., Van Remoortere, P., Janssens, F., Wigerinck, P. & Andries, K. (2008). J. Med. Chem. 51, 875–896.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Garuti, L., Roberti, M., Pizzirani, D., Pession, A., Leoncini, E., Cenci, V. & Hrelia, S. (2004). Il Farmaco, 59, 663–668.
- Ozden, S., Atabey, D., Yildiz, S. & Goker, H. (2008). Eur. J. Med. Chem. 43, 1390–1402.
- Shao, B., Huang, J., Sun, Q., Valenzani, K. J., Schmid, L. & Nolan, S. (2005). Bioorg. Med. Chem. Lett. 15, 719–723.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Snow, R. J. (2007). Bioorg. Med. Chem. Lett. 17, 3660-3666.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Acta Cryst. (2010). E66, o1285-o1286 [doi:10.1107/S1600536810015448]

Ethyl 1-sec-butyl-2-(2-hydroxyphenyl)-1H-benzimidazole-5-carboxylate 0.25-hydrate

N. Arumugam, A. S. Abdul Rahim, H. Osman, M. Hemamalini and H.-K. Fun

Comment

Benzimidazoles belong to one of the well known and most extensively studied class of compounds due to their biological activity such as antitumour (Garuti *et al.*, 2004), antiviral (Bonfanti *et al.*, 2008), antibacterial (Ozden *et al.*, 2008) and analgesic properties (Shao *et al.*, 2005). These derivatives are anti-inflammatory (Blythin *et al.*, 1986) and can be carcinogenic (Snow *et al.*, 2007). As the benzimidazole derivative is of much importance, we have undertaken the X-ray crystal structure determination of the title compound.

The asymmetric unit (Fig. 1) contains an ethyl-1-*sec*-butyl-2- (2-hydroxyphenyl)-1*H*-benzimidazole-5-carboxylate molecule and a water molecule(O1W), occupancy 0.25, which is disordered across a crystallographic inversion center (symmetry code = -x, -y+2, -z+1). The dihedral angle between the benzimidazole ring system (N1–N2/C1–C7) and the phenyl ring (C15–C20) is 59.31 (9)°.

In the crystal structure (Fig. 2), molecules are connected by intermolecular O1—H1O1…N1 and C14—H14C…O1 (Table 1) hydrogen bonds. The crystal structure is further stabilized by C—H… π interactions (Table 1), involving the imidazole ring, N1–N2/C1–C2/C7 (centroid Cg1).

Experimental

The title compound was synthesised according to the previous procedure described by us (Arumugam *et al.*, 2010a,b,c). The product was recrystallized from EtOAc to yield the title compound as colourless crystals.

Refinement

All hydrogen atoms were positioned geometrically [C-H = 0.93 or 0.97Å] and were refined using a riding model, with $U_{iso}(H) = 1.2 \text{ or } 1.5 U_{eq}(C)$. A rotating group model was applied to the methyl groups. In the final refinement cycles the occupancy of the water molecule, O1W, which is disordered over a crystallographic inversion centre, was fixed at 25%.

Figures

Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2. The crystal packing of the title compound, showing the hydrogen-bonded (dashed lines) network. H atoms not involved in hydrogen bond interactions are omitted for clarity.

Ethyl 1-sec-butyl-2-(2-hydroxyphenyl)-1H-benzimidazole-5-carboxylate 0.25-hydrate

F(000) = 730

 $\theta = 2.6-28.6^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 100 KPlate, colourless $0.34 \times 0.21 \times 0.05 \text{ mm}$

 $D_{\rm x} = 1.263 {\rm Mg m}^{-3}$

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 3454 reflections

Crystal data
$C_{20}H_{22}N_2O_3 \cdot 0.25H_2O$
$M_r = 342.90$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
a = 7.0484 (11) Å
b = 27.262 (4) Å
c = 9.4673 (14) Å
$\beta = 97.495 \ (3)^{\circ}$
$V = 1803.6 (5) \text{ Å}^3$
Z = 4

Data collection

Bruker APEX DUO CCD area-detector diffractometer	4738 independent reflections
Radiation source: fine-focus sealed tube	3152 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.064$
φ and ω scans	$\theta_{\text{max}} = 29.0^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2009)	$h = -9 \rightarrow 9$
$T_{\min} = 0.971, \ T_{\max} = 0.996$	$k = -37 \rightarrow 36$
18277 measured reflections	$l = -12 \rightarrow 12$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.066$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.232$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.08	$w = 1/[\sigma^2(F_o^2) + (0.1283P)^2 + 0.731P]$ where $P = (F_o^2 + 2F_c^2)/3$
4738 reflections	$(\Delta/\sigma)_{max} < 0.001$

243 parameters	$\Delta \rho_{max} = 0.35 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.46 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating Rfactors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

			_	IT. */IT	O_{22} (<1)
01	x 0.2704 (2)	y 0.707722 (C)	2	O_{1SO} / O_{eq}	000. (<1)
01	0.3724 (2)	0.72773(6)	0.28243 (18)	0.0229 (4)	
02	-0.2905 (3)	0.97944 (7)	-0.0919 (2)	0.0330 (5)	
03	-0.1402 (3)	0.95244 (8)	-0.2726 (2)	0.0416 (5)	
N1	0.3512 (3)	0.83123 (7)	0.0078 (2)	0.0194 (4)	
N2	0.3227 (3)	0.83949 (7)	0.2392 (2)	0.0198 (4)	
C1	0.4138 (3)	0.81661 (8)	0.1391 (2)	0.0185 (4)	
C2	0.1912 (3)	0.87134 (8)	0.1673 (2)	0.0200 (5)	
C3	0.0594 (3)	0.90402 (10)	0.2134 (3)	0.0257 (5)	
H3A	0.0478	0.9080	0.3095	0.031*	
C4	-0.0530 (3)	0.93018 (9)	0.1083 (3)	0.0258 (5)	
H4A	-0.1424	0.9523	0.1349	0.031*	
C5	-0.0366 (3)	0.92453 (9)	-0.0362 (3)	0.0243 (5)	
C6	0.0965 (3)	0.89227 (9)	-0.0812 (3)	0.0220 (5)	
H6A	0.1090	0.8886	-0.1772	0.026*	
C7	0.2102 (3)	0.86571 (8)	0.0232 (2)	0.0191 (5)	
C8	-0.1585 (4)	0.95277 (10)	-0.1479 (3)	0.0284 (5)	
C9	-0.4223 (4)	1.00752 (11)	-0.1914 (3)	0.0356 (6)	
H9A	-0.3573	1.0187	-0.2697	0.043*	
H9B	-0.4652	1.0362	-0.1437	0.043*	
C10	-0.5894 (4)	0.97724 (12)	-0.2473 (4)	0.0468 (8)	
H10A	-0.6797	0.9970	-0.3072	0.070*	
H10B	-0.6490	0.9646	-0.1694	0.070*	
H10C	-0.5481	0.9505	-0.3018	0.070*	
C11	0.3656 (3)	0.83308 (9)	0.3956 (2)	0.0231 (5)	
H11A	0.4583	0.8063	0.4127	0.028*	
C12	0.4596 (4)	0.87887 (10)	0.4644 (3)	0.0286 (5)	
H12A	0.3742	0.9066	0.4430	0.034*	
H12B	0.4790	0.8745	0.5669	0.034*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C13	0.6503 (4)	0.89027 (11)	0.4137 (3)	0.0350 (6)	
H13A	0.7075	0.9181	0.4648	0.053*	
H13B	0.6305	0.8975	0.3136	0.053*	
H13C	0.7336	0.8624	0.4305	0.053*	
C14	0.1872 (3)	0.81788 (11)	0.4596 (3)	0.0314 (6)	
H14A	0.1249	0.7914	0.4050	0.047*	
H14B	0.1013	0.8453	0.4580	0.047*	
H14C	0.2228	0.8074	0.5562	0.047*	
C15	0.5701 (3)	0.78084 (8)	0.1704 (2)	0.0187 (5)	
C16	0.7463 (3)	0.79107 (9)	0.1229 (3)	0.0217 (5)	
H16A	0.7627	0.8203	0.0753	0.026*	
C17	0.8956 (3)	0.75806 (10)	0.1464 (3)	0.0262 (5)	
H17A	1.0132	0.7653	0.1167	0.031*	
C18	0.8696 (3)	0.71439 (10)	0.2137 (3)	0.0259 (5)	
H18A	0.9697	0.6920	0.2282	0.031*	
C19	0.6961 (3)	0.70333 (9)	0.2606 (3)	0.0228 (5)	
H19A	0.6800	0.6736	0.3056	0.027*	
C20	0.5463 (3)	0.73679 (9)	0.2401 (2)	0.0195 (5)	
H1O1	0.382 (5)	0.7052 (13)	0.361 (4)	0.048 (10)*	
O1W	0.0628 (16)	0.9740 (3)	0.4867 (10)	0.055 (3)	0.25
H1W1	-0.0325	0.9804	0.4320	0.083*	0.25
H2W1	0.1385	0.9962	0.4785	0.083*	0.25

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0148 (7)	0.0317 (9)	0.0230 (9)	-0.0007 (6)	0.0046 (6)	0.0064 (7)
02	0.0285 (9)	0.0373 (11)	0.0324 (10)	0.0122 (8)	0.0006 (8)	0.0084 (8)
03	0.0423 (12)	0.0533 (13)	0.0275 (11)	0.0139 (10)	-0.0021 (9)	0.0073 (9)
N1	0.0160 (8)	0.0256 (10)	0.0167 (9)	-0.0001 (7)	0.0026 (7)	-0.0001 (7)
N2	0.0157 (8)	0.0273 (10)	0.0164 (9)	0.0032 (7)	0.0013 (7)	0.0018 (7)
C1	0.0149 (9)	0.0238 (11)	0.0169 (11)	-0.0005 (8)	0.0024 (7)	0.0014 (8)
C2	0.0156 (10)	0.0261 (12)	0.0180 (11)	0.0011 (8)	0.0010 (8)	0.0021 (8)
C3	0.0202 (11)	0.0323 (13)	0.0247 (12)	0.0062 (9)	0.0039 (9)	0.0006 (10)
C4	0.0194 (11)	0.0302 (13)	0.0281 (13)	0.0060 (9)	0.0034 (9)	0.0020 (10)
C5	0.0211 (11)	0.0251 (12)	0.0255 (12)	0.0014 (9)	-0.0016 (9)	0.0034 (9)
C6	0.0222 (11)	0.0259 (12)	0.0175 (11)	-0.0005 (9)	0.0012 (8)	0.0013 (9)
C7	0.0152 (9)	0.0223 (11)	0.0197 (11)	-0.0006 (8)	0.0013 (8)	0.0006 (8)
C8	0.0259 (12)	0.0295 (13)	0.0285 (13)	0.0034 (10)	-0.0012 (10)	0.0046 (10)
C9	0.0289 (13)	0.0371 (15)	0.0392 (16)	0.0106 (11)	-0.0018 (11)	0.0118 (12)
C10	0.0392 (16)	0.0443 (18)	0.054 (2)	0.0057 (13)	-0.0043 (14)	-0.0063 (15)
C11	0.0211 (10)	0.0331 (13)	0.0153 (11)	0.0045 (9)	0.0034 (8)	0.0030 (9)
C12	0.0278 (12)	0.0352 (14)	0.0226 (12)	0.0057 (10)	0.0020 (9)	-0.0015 (10)
C13	0.0280 (13)	0.0375 (15)	0.0375 (16)	-0.0050 (11)	-0.0034 (11)	-0.0039 (12)
C14	0.0234 (12)	0.0494 (16)	0.0225 (13)	0.0021 (11)	0.0066 (9)	0.0076 (11)
C15	0.0164 (10)	0.0239 (11)	0.0157 (10)	-0.0001 (8)	0.0019 (8)	-0.0010 (8)
C16	0.0177 (10)	0.0280 (12)	0.0200 (11)	-0.0010 (9)	0.0050 (8)	0.0018 (9)
C17	0.0162 (10)	0.0388 (14)	0.0245 (12)	0.0029 (9)	0.0060 (9)	-0.0011 (10)

C18 C19 C20	0.0201 (11) 0.0228 (11) 0.0151 (10)	0.0334 (13) 0.0267 (12) 0.0279 (12)	0.0245 (12) 0.0189 (11) 0.0157 (10)	0.0069 (9) 0.0025 (9) -0.0006 (8)	0.0042 (9) 0.0026 (8) 0.0030 (7)	0.0005 (10) 0.0011 (9) -0.0011 (8)
OIW	0.099 (8)	0.032 (4)	0.046 (5)	-0.004 (5)	0.052 (6)	0.000 (4)
Geometric param	neters (Å, °)					
O1—C20		1.361 (3)	C10—	H10C		0.9600
01—H101		0.96 (4)	C11—	C12		1.519 (4)
O2—C8		1.343 (3)	C11—	C14		1.523 (3)
О2—С9		1.452 (3)	C11—1	H11A		0.9800
O3—C8		1.204 (3)	C12—	C13		1.518 (4)
N1-C1		1.325 (3)	C12—	H12A		0.9700
N1—C7		1.389 (3)	C12—	H12B		0.9700
N2—C1		1.363 (3)	C13—	H13A		0.9600
N2—C2		1.383 (3)	C13—	H13B		0.9600
N2—C11		1.483 (3)	C13—	H13C		0.9600
C1—C15		1.472 (3)	C14—	H14A		0.9600
C2—C7		1.396 (3)	C14—	H14B		0.9600
C2—C3		1.397 (3)	C14—	H14C		0.9600
C3—C4		1.386 (3)	C15—	C20		1.391 (3)
С3—НЗА		0.9300	C15—	C16		1.403 (3)
C4—C5		1.396 (4)	C16—	C17		1.380 (3)
C4—H4A		0.9300	C16—	H16A		0.9300
C5—C6		1.393 (3)	C17—	C18		1.374 (4)
С5—С8		1.487 (3)	C17—	H17A		0.9300
С6—С7		1.392 (3)	C18—	C19		1.388 (3)
С6—Н6А		0.9300	C18—	H18A		0.9300
C9—C10		1.479 (4)	C19—	C20		1.389 (3)
С9—Н9А		0.9700	C19—	H19A		0.9300
С9—Н9В		0.9700	O1W-	-O1W ⁱ		1.708 (18)
C10—H10A		0.9600	O1W-	-H1W1		0.8114
C10—H10B		0.9600	O1W-	-H2W1		0.8187
С20—О1—Н1О1		112 (2)	C12—	C11—C14		112.9 (2)
С8—О2—С9		116.6 (2)	N2—C	C11—H11A		107.4
C1—N1—C7		105.09 (19)	C12—	C11—H11A		107.4
C1—N2—C2		106.95 (19)	C14—	C11—H11A		107.4
C1—N2—C11		125.96 (18)	C13—	C12—C11		112.8 (2)
C2—N2—C11		127.02 (19)	C13—	C12—H12A		109.0
N1—C1—N2		112.65 (19)	C11—	C12—H12A		109.0
N1—C1—C15		122.5 (2)	C13—	С12—Н12В		109.0
N2—C1—C15		124.82 (19)	C11—	С12—Н12В		109.0
N2—C2—C7		105.54 (19)	H12A-			107.8
N2—C2—C3		132.6 (2)	C12—	С13—Н13А		109.5
С7—С2—С3		121.9 (2)	C12—	С13—Н13В		109.5
C4—C3—C2		116.4 (2)	H13A-			109.5
C4—C3—H3A		121.8	C12—	С13—Н13С		109.5
С2—С3—НЗА		121.8	H13A-	—С13—Н13С		109.5
C3—C4—C5		122.3 (2)	H13B-	C13H13C		109.5

C3—C4—H4A	118.8	C11—C14—H14A	109.5
С5—С4—Н4А	118.8	C11—C14—H14B	109.5
C6—C5—C4	120.9 (2)	H14A—C14—H14B	109.5
C6—C5—C8	117.4 (2)	C11—C14—H14C	109.5
C4—C5—C8	121.7 (2)	H14A—C14—H14C	109.5
C7—C6—C5	117.4 (2)	H14B—C14—H14C	109.5
С7—С6—Н6А	121.3	C20—C15—C16	119.4 (2)
С5—С6—Н6А	121.3	C20—C15—C1	122.27 (19)
N1—C7—C6	129.1 (2)	C16—C15—C1	118.3 (2)
N1—C7—C2	109.77 (19)	C17—C16—C15	120.5 (2)
C6—C7—C2	121.1 (2)	С17—С16—Н16А	119.8
O3—C8—O2	124.0 (2)	C15—C16—H16A	119.8
O3—C8—C5	124.6 (2)	C18—C17—C16	119.6 (2)
O2—C8—C5	111.4 (2)	С18—С17—Н17А	120.2
O2—C9—C10	110.5 (2)	С16—С17—Н17А	120.2
О2—С9—Н9А	109.5	C17—C18—C19	120.9 (2)
С10—С9—Н9А	109.5	C17—C18—H18A	119.6
О2—С9—Н9В	109.5	C19—C18—H18A	119.6
С10—С9—Н9В	109.5	C18—C19—C20	119.9 (2)
Н9А—С9—Н9В	108.1	С18—С19—Н19А	120.1
C9—C10—H10A	109.5	С20—С19—Н19А	120.1
C9—C10—H10B	109.5	O1—C20—C19	122.5 (2)
H10A—C10—H10B	109.5	O1—C20—C15	117.73 (19)
C9—C10—H10C	109.5	C19—C20—C15	119.8 (2)
H10A—C10—H10C	109.5	$O1W^{i}$ — $O1W$ — $H1W1$	60.9
H10B—C10—H10C	109.5	$0.1W^{i}$ $0.1W$ $H2W1$	75.8
N2-C11-C12	110.6 (2)	$H1W1 \longrightarrow 01W \longrightarrow H2W1$	106.0
N2-C11-C14	110.99 (19)		100.0
C7—N1—C1—N2	-0.1 (2)	C6—C5—C8—O3	-5.9 (4)
C7—N1—C1—C15	-178.0 (2)	C4—C5—C8—O3	173.6 (3)
C2—N2—C1—N1	0.0 (3)	C6—C5—C8—O2	175.0 (2)
C11—N2—C1—N1	-176.9 (2)	C4—C5—C8—O2	-5.5 (3)
C2—N2—C1—C15	177.8 (2)	C8—O2—C9—C10	87.3 (3)
C11—N2—C1—C15	0.8 (4)	C1—N2—C11—C12	109.2 (2)
C1—N2—C2—C7	0.1 (2)	C2—N2—C11—C12	-67.2 (3)
C11—N2—C2—C7	177.0 (2)	C1—N2—C11—C14	-124.7 (2)
C1—N2—C2—C3	-179.9 (3)	C2—N2—C11—C14	59.0 (3)
C11—N2—C2—C3	-2.9 (4)	N2-C11-C12-C13	-62.2 (3)
N2—C2—C3—C4	-179.3 (2)	C14—C11—C12—C13	172.8 (2)
C7—C2—C3—C4	0.7 (4)	N1-C1-C15-C20	-121.4 (2)
C2—C3—C4—C5	-0.1 (4)	N2-C1-C15-C20	61.0 (3)
C3—C4—C5—C6	-0.6 (4)	N1-C1-C15-C16	56.0 (3)
C3—C4—C5—C8	179.9 (2)	N2-C1-C15-C16	-121.5 (2)
C4—C5—C6—C7	0.7 (3)	C20-C15-C16-C17	-0.7 (3)
C8—C5—C6—C7	-179.8 (2)	C1—C15—C16—C17	-178.3 (2)
C1—N1—C7—C6	-179.3 (2)	C15-C16-C17-C18	1.5 (4)
C1—N1—C7—C2	0.2 (2)	C16-C17-C18-C19	-1.0 (4)
C5—C6—C7—N1	179.4 (2)	C17—C18—C19—C20	-0.4 (4)

C5—C6—C7—C2	-0.1 (3)	C18—C19—C20—O1	179.3 (2)
N2-C2-C7-N1	-0.2 (2)	C18—C19—C20—C15	1.2 (4)
C3—C2—C7—N1	179.8 (2)	C16-C15-C20-O1	-178.9 (2)
N2—C2—C7—C6	179.3 (2)	C1-C15-C20-O1	-1.4 (3)
C3—C2—C7—C6	-0.7 (4)	C16-C15-C20-C19	-0.6 (3)
C9—O2—C8—O3	2.8 (4)	C1-C15-C20-C19	176.8 (2)
C9—O2—C8—C5	-178.2 (2)		

Symmetry codes: (i) -x, -y+2, -z+1.

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1,N2,C1,C2,N7 imi	dazole ring.			
D—H··· A	<i>D</i> —Н	H…A	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\dots}\!A$
O1—H1O1···N1 ⁱⁱ	0.96 (4)	1.75 (4)	2.691 (3)	168 (3)
C14—H14C···O1 ⁱⁱ	0.96	2.45	3.398 (3)	168
C17—H17A···Cg1 ⁱⁱⁱ	0.93	2.96	3.734 (3)	142
Symmetry codes: (ii) <i>x</i> , - <i>y</i> +3/2, <i>z</i> +1/2; (iii) <i>x</i> +1, <i>y</i> , <i>z</i> .				

Fig. 2